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On explicit reflection in theorem proving 
and formal verification* 

Sergei N. Artemov * 

Abstract 

The basic properties of soundness, extensibility, and stability required from a verifica- 
tion system V taken in full yield the necessity of having a reflection rule in every such V. 
However, the reflection rule based on the Gödel provability predicate (implicit provability 
predicate) leads to a "reflection tower" of theories which cannot be formally verified. 

The paper introduces an explicit reflection mechanism which can be verified inside 
the system. This circumvents the reflection tower and provides a strict justification for 
the verification process. On the practical side, the paper gives specific recommendations 
concerning the verification of inference rules and building a verifiable reflection mechanism 
for a theorem proving system. 

1    Introduction 

There is a large variety of theorem provers and proof checkers which can be used for verification 
(cf. [8], [1], [11]). The mathematical counterparts of those systems range from first order logic 
(e.g. in FOL) and certain fragments of first order arithmetic to higher order logic (HOL), the 
systems with powerful principles sufficient to accommodate most of the classical mathematics 
(Mizar) and most of the computational and constructive tools (Nuprl). The underlying 
logic of such systems can be either classical or intuitionistic. 

In this paper we assume that 

The degree of confidence in a fact verified by a certain system is not higher than 
the degree of confidence in the system itself. 

'Technical Report CFIS 98-16, Cornell University. Lecture notes of the talk given by the author at the 
PRL Seminar of the Department of Computer Science, Cornell University, on November 24, 1998. 

tCenter for Foundation of Intelligent System, Cornell University, email:artemovCinath.cornell.edu. The 
research described in this paper was supported in part by ARO under the MURI program "Integrated Approach 
to Intelligent Systems", grant DAAH04-96-1-0341, by DARPA under program LPE, project 34145, and by the 
Russian Foundation for Basic Research, grant 96-01-01395. 
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This paradigm yields the necessity to keep an account of the tools used in a given verification 
process. This includes the verification system V itself along with an exact description of the 
set of all metamathematical assumptions M made in the process of verification. Therefore, 
the set of beliefs which the verification is based upon should include V U M. Without loss 
of generality we assume in this paper that a metatheory M. of a given verification system V 
contains V, therefore, V U M = M 

For example, suppose we want to verify a statement F by means of the first order 
arithmetic VA (i.e. V = VA). One of the possible ways to put this problem on a for- 
mal setting is to say that our goal consists in establishing that VA \- Provable(F), 
where Provable(F) is a formal statement saying that "F is provable by certain 
formal tools". Suppose that we have established that ZT \- Provable(F), where 
ZT is the Zermelo-Frenkel set theory (a much stronger theory than VA). This 
corresponds to a realistic situation when a verifier uses the power of all of mathe- 
matics, not only the elementary methods formalizable in VA. Here is the sketch of 
the standard metamathematical argument which under certain assumptions about 
ZT concludes that in fact VA h Provable(F): assume that ZT is w-consistent (cf. 
[14],[7],[15]); since Provable(F) is an arithmetical Ei statement, this yields that 
Provable(F) is true and, by the Ei-completeness of VA, VA r- Provable(F). On 
the one hand, we have succeeded in establishing that VA I- Provable(F). On the 
other hand, at the metalevel of this argument we have used the power of ZT and 
even the assumption of w-consistency of ZT. A total account of the beliefs in- 
volved in this verification process should include this assumption, which, by the 
way, has never been and could not possibly be proven by any usual consistent 
mathematical means1. 

In this paper we will try to demonstrate the following three points: 

1. Some form of the reflection rule is a necessary part of an extendable verification system. 
This will emerge as a natural corollary of the basic soundness, extensibility, and stability 
assumptions (cf. [8]) about a verification system. 

2. The traditional reflection based on the implicit provability predicate cannot be verified in 
full. It is well-known that even if the implicit reflection is a valid rule in a given system V, its 
verification cannot be made inside V (cf. [8], [12], [1], [11]). The present paper demonstrates 
that the natural metatheory of the "reflection tower" of the implicit reflection rules is not 
computably enumerable and subsumes all true Ili-sentences. If one takes into account these 
hidden metamathematical costs, then within the theory of implicit provability the verification 
goal of establishing a fact F in V by formally verifying in V a proof of F is not achievable. 

'A better way to present the verification solution from this example would be to simply admit that we are 
doing the verification in V = 2SF and thus to restrict the set of beliefs to ZT. 



3. There is a new reflection mechanism: "explicit reflection" (introduced in the present 
paper), which is verifiable in the system itself. The explicit reflection circumvents the reflection 
tower and provides the strict justification of verification. Explicit reflection requires more 
information in order to certify the premises of the reflection rule. However, this additional 
information are usually available in real processes of verification; the old implicit provability 
model just has not had a mechanism of its utilisation. 

On the theoretical side, this paper provides a foundational justification of the verification 
process. On the practical side, the paper gives specific recommendations concerning the 
verification of the admissible rules and building a verifiable reflection mechanism for a theorem 
proving system. 

2    Verification systems 

2.1 Definition. Under a verification system V we will understand a formal theory satisfying 
the following conditions a) - d): 

a) The underlying logic of V is either classical or intuitionistic. 
b) Proofhood in V is decidable, therefore theoremhood in V is computably enumerable. 

Note that by the well-known Craig Theorem the former follows from the latter for an appro- 
priate choice of axiom system. 

c) V is strong enough to represent any computable function and decidable relation. In 
particular, given a decidable relation R(x) one can construct a formula Tt{x) of V such that 
for any closed terms t 

"R(i)n implies V I- Tl(i) and "not R(i)n implies V h -ift(t). 

d) V has some sort of a numeration of syntax mechanism in the style of [8], [1]. In par- 
ticular, there is an injective function rep which maps syntactic objects like terms, formulas, 
finite sequences of formulas, sequents, finite trees labeled by sequents, derivation trees, etc., 
into standard ground terms of V. The usual notation used in this case is rs~l = rep(s). The 
function rep and its inverse are both computable. We assume that V is able to derive formal- 
izations of "usual" combinatory properties of the syntactic objects at a level corresponding 
to the first order intuitionistic arithmetic %A. 

It follows from b) and c) that there is a total computable function which given R(i) returns 
a proof of 7£(i) in the former case, and a proof of -^R.(i) in the latter case. For the sake of 
notational simplicity we will use the same names for the informal objects (relations, func- 
tions, numbers) and for their formal counterparts (formulas, terms, ground terms) whenever 
unambiguous. 



Examples of verification systems: the first order arithmetic VA; the first order intuitionistic 
arithmetic VA and its extensions; second order arithmetic; Martin-Löf type theory 27T; 
formal set theory ZT\ etc. Note that all the above conditions on V have a purely constructive 
syntactic character. We have assumed neither semantic properties of V (e.g. soundness with 
respect to some semantics) , nor metamathematical ones (consistency, w-consistency, etc.). 

2.2 Definition. For any verification system V there is a provably decidable (i.e. from Ai) 
formula Proof (x,y) of V (called a proof predicate) obtained by a natural formalization of the 
inductive definition of derivation in V (cf. [9], [8], [1]). In particular, Proof (rVn,r<p~>) holds iff 
V is a proof of <p in V. The Gödel provability predicate Provable(y) is defined as BxProof(x, y). 
We will use the notation dip for Provable^ ipP) and \p\ip for Proof {p,rif1). For any finite set 
of V-formulas T by DT we mean the conjunction of ü^'s for all tp € T. 

2.3 Definition. The consistency formula Consis(V) is defined as -iü_L, where _L is the 
standard false formula in V. The informal meaning of Consis(V) is that there is no a proof of 
false in V: this is one of the equivalent formulations of the consistency assertion of V in the 
language of V. 

We will refer to the provability predicate □(•) as the implicit provability predicate. The 
reason for choosing this name lies in the fact that in the formula D<p (i.e. 3a;Proof (x, r</?~1)) 
the proof is represented implicitly by the existential quantifier, which does not provide any 
specification of this proof. 

The implicit provability predicate has been studied extensively since its invention by Gödel 
in 1930. The milestone results here are the second Gödel incompleteness theorem (cf. [14], 
[7])), which states that 

IfV is consistent, then   \f Consis(V), 

and the Lob theorem which says that 

V r- Dip—>np implies V \~ <p. 

By the well-known Hilbert-Bernays lemma (cf. [14],[7]), 

V h (f    implies   V h dtp. 

This lemma can be considered as a justification of the formalization rule <p/d<p for V , which 
states that every proof in V can be formalized in V. The proof of the formalization rule is 
purely syntactic and does not involve any extra assumptions about V. Moreover, this rule 
can be formalized and proven inside V (cf. [14], [7]): 

VhD^4 no<p. 



Below we will use one more fact about the provability operator □, usually attributed to 
Hubert, Bernays and Lob (cf.[14],[7]): 

V I- n(<p-n/)) -*■ (Dy>-»o^). 

3    Stability requires reflection 

The basic properties required from a verification system are soundness, extensibility, and 
stability ([8]). We will discuss soundness in Section 4. Extensibility and stability will appear 
in this section below. 

3.1 Definition. A rule of inference R in the language of V is a computable function from a 
decidable set of finite sets of V-formulas to the set of V-formulas. The usual notation for a rule 
of inference R is T/<p, where T indicates the argument of R (premises), and <p the value R(T) 
of R (conclusion). For the sake of notational convenience we will not distinguish between a 
finite set of formulas T and one formula which is the conjunction of all formulas from T when 
unambiguous. We would like to think that such an abuse of notation will be tolerated by a 
reader. 

3.2 Definition.     A rule of inference T/<p is derived in V if V I- T —»■ <p. 
A rule of inference T/<p is implicitly verified in V if V h or —»■ Oy>. 
A rule T/(f is admissible in V if V I- T implies V f- <p. 

3.3 Lemma. 
1. Every derived rule is implicitly verified, but not vice versa. 
2. Every derived rule is admissible, but not vice versa. 

Proof. 1. Let V h T -)• tp. By the formalization rule, V r- D(r ->• <p). By the properties 
of provability operator (Section 2), V I- OT ->■ Dip. Here are examples of implicitly verified 
rules that are not derivable: <p/Vx(p (generalization), cp/Ocp (formalization), Cl(p-+<p/<p (Löb's 
rule), ->->a)/o~, where ffisaSi sentence (Markov rule for intuitionistic arithmetic 7iA, cf. 
[16]). 

2. If V r- T —> <p and V r- T, then V \- (p. The rules generalization, formalization, Lob's 
rule, Markov rule from above are all admissible but not derived. 
-4 

The extensibility property of V is understood ([8]) as a technical possibility to extend V by 
adding rules of inference verified in V. We accept the understanding of stability as conserva- 
tivity of extensions by implicitly verified rules (cf. [1], [11]). 



3.4 Definition.     System V 3 V is conservative over V if for any formula ip 

V' h- -0 implies   V (- ty. 

A system V is implicitly stable if for any rule T/(p implicitly verified in V the system V + T/<p 
is conservative over V. 

3.5 Definition.     The implicit reflection rule IRR(V) is the rule &<p/<p where 0<p represents 
the provability of <p in V. 

3.6 Example. Here is the standard example of a formal theory for which the implicit 
reflection rule does not hold ([9]): V = VA + ->Consis(PA). This system is consistent, i.e. 
V \f -L. On the other hand V h Ü.L, where ü stands for provability in this particular V. 

3.7 Theorem. A verification system V is implicitly stable iff the implicit reflection rule 
IRR(V) is admissible in V. 

Proof. Let V be an implicitly stable system. Let us consider the rule Ry> consisiting of 
a single pair (TRUE,<p), where TRUE is the propositional constant for true statements in 
V. Since V h TRUE, we also have V h O(TRUE). By implicit stability of V, for all <p, rj> if 
V\-n(TRUE)-+ Dip and V + TRUE/ip h V>, then V h ij>. Equivalently, for all <p, V> if V h D(p 
and V + <ph tj;, then V h tp. Let V> be (p. Then V h □</> implies V H ^ for all 9, therefore 
Ißß(V) is admissible in V. 

Let now IRR(V) be admissible in V, i.e. V h Dtp implies V r- (p, and let T/V be an 
implicitly verified rule, i.e. V h or -*• Hep. By an induction on the derivation in V 4- T/ip we 
prove that V + T/<p h ^ implies V h ^. The induction basis holds because V and V + r/y> 
have the same set of axioms. The induction step in the case of a rule other than T/(p is 
trivial. Let tp be obtained in V + T/(p by the rule T/<p, i.e. there is specific Ti such that Ti/tp 
is a special case of the rule T/(p and V + T/<p \- Ti. By the induction hypothesis, Vh^. 
By the formalization rule in V, V r- DIV Since the rule T/<p is implicitly verified, we have 
V h Dri-frCty, therefore V h Q^. By the rule JiLR(V), V h V- 
< 

Extensibility by derived rules however, can be verified inside the system without any additional 
assumptions. 

3.8 Theorem. An extension of a verification system V by a derived rule is provably in V 
conservative. 



Proof. The following argument can be formalized in V. Let V h Y—xp and V' = V -f T/(p. 
By the induction on a proof in V' similar to the one from the proof of Theorem 3.7 we show 
that for any formula ip if V' r- if), then V h if). We consider the most important case in the 
induction step. Let ip be obtained in V + T/ip by the rule T/<p, i.e. there is specific Ti such 
that Ti/ij} is a special case of the rule T/ip and V + T/<p I- IV By the induction hypothesis, 
V H rx. Since V h Tx -+ Y\ we got V h V- 

3.9 Comment. Nuprl has the mechanism of tactics based on the extension by the derived 
rules. As we see from 3.8, this mechanism can be justified inside the system as does not 
need any additional assumptions. Although correct this mechanism is not as general as the 
extensions by verified rules (cf. Lemma 3.3(2)). 

4    Metamathematical cost of soundness and implicit stability 

In this section we will find lower and upper bounds for the minimal metatheory M capable 
of establishing soundness and stability of a given verification system V. 

We will use the Turing progression as the standard scale to measure the metamathematical 
strength of a given extension of the basic theory ([13]). The Turing progression V£ of theories 
(cf. [17], [10], [2]) for V is obtained from V by iterating the consistency assumptions along 
the Church-Kleene system of constructive ordinals a. 

We consider the first u; theories from the Turing progression. 

V0
C = V,        K+1 = V< + Consist),        Vc

w = (jv*. 
n 

If V is correct with respect to the standard model of arithmetic, then the following strict 
inclusions hold: 

V0
C C V{ C V| c... c vc

w. 

Soundness was described in [8] as the condition that "We must be entirely convinced that 
any proof of a theorem which the system certifies as correct should indeed be so." A straight- 
forward way to formalize soundness would be to assume some sort of the semantics for V, to 
take M powerful enough to express the notion of truth for the V-formulas and to establish 
inside M. a formal analogue of the statement 

for every sentence <pif<p is provable then ip is true. 



This approach would require a fairly strong M. In particular, one needs to extend the language 
of V in order to write down formulas "<p is true"; by the well-known Tarski theorem there is 
no such formula in the language of V itself. 

In fact, soundness of a verification system V deals with the true values of formal statements 
of an especially simple type, namely provable Ai sentences ftj(p. 

4.1 Theorem. 

1. The following conditions are equivalent: a) V h \t\ip implies \t\ip is true; b) V 
is consistent. 

2. V suffices to establish 1. 

Proof. If la then the false sentences of the kind [ijv? are not provable in V, therefore 
V is consistent. Suppose lb and let V f- ftjip. If [£]</? were false, then V I—>lt}<p, by Ai 
completeness of V. This leads to a contradiction in V. 

2. The straightforward formalization of the proof of 1 with the use of provable Ai com- 
pleteness of V. 

4.2 Corollary. Simple consistency of V is necessary and sufficient for soundness of a 
verification system V. 

Now we will figure out what metatheory can establish implicit stability. 

4.3 Definition. by "V is stable" we understand the V-formula which is the natural 
formalization of the stability property of V. By "implicit reflection rule is admissible in 
V, or equivalently 

Vx(DOa;-)-Dx), 

we mean the natural formalization in the language of V of the property that IRR(V) is 
admissible in V. 

4.4 Theorem.    V h "V is stable"  •<=>•  "implicit reflection rule is admissible in V" 

Proof.    The straightforward (though delicate) formalization of the proof of Theorem 3.7. 

4.5 Theorem.     Implicit stability of an u-consistent verification system is not provable in 
this system. 



Proof. By Theorem 4.4, implicit stability is provable in V iff V h Vx(oax ->• Da;). Let x is 
the code of _L. Then V h OD±-)-D±. By Löb's theorem, V h D±, which is impossible for an 
u;-consistent V. 
< 

It follows from the above that the minimal metatheory for soundness and implicit stability 
is 

M = V + Consis(V) + Vx(üDx -» Dz). 

4.6 Theorem. IfVis correct with respect to the standard model of arithmetic then the 
metatheory for soundness and implicit stability strictly subsumes the first u steps of the Turing 
progression. 

Proof. In order to establish V£ C M consider the formulas D°_L = _L, Dn+1J_ = □ (□"!). 
First of all we note that under the assumptions made about V the formula Consis{y^) is 
provably equivalent in V to ->Dn+1± (cf. [2]). Indeed, Consis(Vß) is Consis(V), i.e. ->D±. 
Then Consis^) is a formula stating that V + Consis(V) \f _L, i.e. V + ->□! if ±. This is 
equivalent to V \f -iDJL -»■ 1 and V \f D±.   Therefore, Consis{Vf) is equivalent to -.DOl. 
Similar argument works for n = 2,3,4,  

Now we show how to derive all -iDn_L, n = 1,2,3,... in M. The case n = 1 is covered 
by the assumption that M h Consis(V), which is equivalent to M h ->D±, orMhOl^l 
For n = 2 put x = _L in Vx(OOx ->• Di). Then M r- ÜG1 ->• OJ_. Since we have already 
had M h D±->-±, we conclude that M r- GDI ->■ _L, i.e. M I—iDDJ_. A similar argument 
works for n = 3,4,5, Thus 

VZcM. ' w 

Now we will check that V£ ^ M. Suppose 

V£ h Consi's(V) A Vx(DDa: -* Dx). 

By the compactness argument, there is a natural number n such that 

V£ h Consis(V) A Vx(DDx -> Dx). 

Since V£ C M, M proves the consistency of V£. Therefore 

Ve
n h Consist), 

which is impossible by the second Gödel incompleteness theorem for V£. 



5    Metamathematical cost of implicit reflection 

In an w-consistent verification system V the rule of implicit reflection IRR(V) is admissible, 
i.e. V t- 0<p yields V r- <p for any formula (p. The most simple formalization of the admissibility 
property is the scheme UUy^Utp, where D^> stands for the formula of provability of tp in V. 
A general procedure of incorporating implicit reflection rule into a verification system V may 
be presented by the following reflection tower of extensions of V (cf. [12], [1], [11]): 

Vo = V,   Vr
a+1 = V; + IRR{VZ),   V;=|JV^ for a limit ordinal 7. 

For the sake of simplicity we assume in this section that V is sound with respect to the 
standard model of arithmetic. 

In this section we will try to figure out what natural metatheory is able to establish the 
admissibility of all the reflection rules from the reflection tower. 

5.1 Definition. Implicit reflection principle IRP(V) for a given system V is the scheme of 
formulas 

{n<p—Kp I  (p is a sentence ofV}. 

Let us consider Feferman's progression of extensions of V by the implicit reflection principles 
([10]): 

vo = V,   K+i = V> + IRP(V?),   V* = IJ Vp
ß for a limit ordinal 7. 

ß<i 

The system Vf proves admissibility of implicit reflection in VQ, i.e. the scheme of formulas 
OD<y? —)• Hip. In addition Vf C V[, since every instance of the rule 0<p/<p in a proof in V[ 
can be emulated by the axiom Q<p-np. Moreover, the inclusion Vf C V[ can be established 
in V. Iterating this argument one can show that V£+1 is the theory capable of establishing 
admissibility of the implicit reflection rule for V£. 

How bad really is the reflection tower for V? The natural metatheory capable of verifying the 
whole reflection tower is the limit of Feferman's progression V£ for all constructive ordinals 
a. 

5.2 Proposition.     ([10]) The limit of V% for all constructive ordinals a equals 

V + all true Ui-sentences. 

It follows from the above that the natural metatheory for the reflection tower is not com- 
putably enumerable, and could not possibly be verified by any sound mathematical means. It 
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contains, for example, the consistency statements for all consistent axiomatic theories, among 
them Consis{ZT) (provided ZF is consistent). 

In the next section we describe explicit reflection, which is verifiable by means of the system 
itself and thus circumvents the reflection tower. 

6    Explicit reflection for verification systems 

An alternative way to represent provability in a logical setting has been developed in [3] - [6]. 
The key idea of this approach is to represent provability by a certain family of proof operators 
\t\<p (i.e. Proof {t,r<pP)) with an appropriate set of ground proof terms t). As it was shown in 
[5] and [6], every propositional property of the provability operator can be represented by the 
family of proof operators with a certain class of finitely generated terms. It is easy to notice 
that the following explicit formalization theorem holds: For every sentence ip such that V \- ip 
there is a ground term t of V such that V h [t]yj. 

6.1 Definition. The explicit reflection principle ERP(V) is the scheme of formulas [£]y>-»^ 
for all sentences tp and all ground terms t. 

6.2 Lemma.     (Derivability of explicit reflection [3]). For any ground term t and formula <p 

Proof. We give a constructive proof of this lemma which delivers an algorithm for con- 
structing a derivation of [t]y ->• <p in V given <p and t. First of all, by the proof checking 
procedure we calculate the truth value of \t\(p. If this value is TRUE, then the ground term 
t represents a derivation of <p, from which by a straightforward reconstruction, we obtain the 
proof of \t\<p-*<p. If the proof checker on fijy returns FALSE, then by the corresponding 
procedure mentioned in 2.1, we get the proof of ->[t]v in V. From that by the straightforward 
transformation, we get the proof of [£]v?-*y. 
< 

6.3 Corollary. There is an algorithm which given a formula tp and a ground term t returns 
the ground term p such that 

VHfp]([tl¥>->¥>). 

6.4 Definition. The explicit reflection rule ERR(V) is the rule \t\<p/ip for all ground terms 
t and all sentences (p. 

11 



6.5 Definition.     A rule T/ip is explicitly verifiable in V if there is a total computable function 
/ such that V I- [yir-4 \J{y)\<p. 

It is clear from the definitions that "explicitly verifiable" implies "implicitly verifiable". 

6.6 Theorem.     The explicit reflection rule ERR(V) is explicitly verifiable in V. 

Proof.     Let "•" be a total and computable "application" function on proof codes, specified 
by the condition 

(cf. [5], [6]). By 6.3, V h [p]([*l ¥>-*¥>) f°r some ground term p. Therefore, 

Vr-([y]Mv»->[p-ylv)- 

6.7 Corollary.      The explicit reflection rule ERR(V) is admissible for every verification 
system V. 

6.8 Definition.     A rule of inference included in the description of a system V is called an 
internal rule of V. 

6.9 Lemma.     Every internal rule is explicitly verifiable. 

Proof. There is a straightforward function behind every internal rule A ftp which calculates 
the code of a proof of i/> given the codes of proofs of A. A natural formalization of this function 
in V gives a term / such that V h [y]A->[/(j/)]^. 
< 

6.10 Definition. An extension V' of V is verifiably equivalent to V if there is a computable 
function g of V such that V h [s]ty-> [ff(a:)]|V, where {xftp stands for the formula ux is a 
proof of $ in V'. In other words, for a verifiably equivalent extension V' there is an algorithm 
that transforms proofs in V into proofs of the same facts in V. 

6.11 Theorem.      An extension of a verification system by an explicitly verified rule is 
verifiably equivalent to the original system. 
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Proof. Let a rule T/<p be explicitly verifiable in a verification, system V, i.e. there is a 
computable function / such that V h [y]r-> [f(y)]<p. Let V be V + T/<p. The function g(x) 
works as follows. It travels along the proof tree in V' coded by x and calculates the code of 
a proof tree in V of the same sentence (sequent). If the observed node is a leaf node, then it 
corresponds to an axiom of V, which is an axiom of V as well. In this situation g does not 
change the the proof at all. 

Let the observed node correspond to an application of an internal rule A/0, and let u be 
the values of g on the predecessors of the current node, i.e. V h [tilA. By lemma 6.9, there 
is a computable function h such that V h [y]A -+ lh(y}}0. Substituting u for y we derive 
\h(ufl0 in V. Let g map the observed node to h(u). 

Let the observed node correspond to an application of the new rule T/<p, and let v be the 
values of g on the predecessors of this node, i.e. V h [t/jr. By the conditions of the theorem 
V r- [y|r -+ lf(y)J(p. Substitute u's for y's, conclude that V (- [/(u)]<P and let g map the 
observed node to f{v). 

Eventually, at the root node of the V'-proof (coded by) x the function g returns the code 
of a V-proof of the formula (sequent) previously proven by z. 
< 

7    Practical suggestions 

As one can see, explicit reflection avoids some of the troubles inherent in implicit reflection. 
Here is the list of practical suggestions for the designers of verification systems. Explicit 
reflection says nothing new for nonextendable systems without reflection mechanism. In such 
a system the explicit reflection rule has already been used by default when one concludes that 
V has verified a fact ip given that V I- \t\ip for some proof code t. 

There are two classes of systems where explicit reflection can bring a significant improve- 
ment. 

1. Verification systems with extensibility but without special built-in reflection 
mechanisms. Here the use of explicit reflection may be twofold. Firstly, it appears in 
the assertion insertion mode (cf. [8]), when it is established that V h [£]<p and then ip is 
stored as a verified fact (i.e. a new axiom) of V. We have nothing specific to add here, 
since this mode as presented above (and in [8]) already agrees with the explicit reflection 
recommendations. Secondly, the explicit reflection appears in the rule insertion mode, when 
T/ip is verified in V and then added to V as a new inference rule. The explicit reflection 
suggests verifying the rule T/tp in V explicitly, i.e. by constructing a computable function / 
such that V h \y\Y -»■ lf(y)}<p. By doing this we guarantee that the resulting extension is 
verified in the old system without any hidden metaassumptions. 

If the rule insertion mode uses explicit verification only, then there is no need to 
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have a special built-in reflection mechanism: provable stability of the system is 
preserved by explicit verification (Theorem 6.11). 

Interestingly enough, there are substantial classes of verification systems where the implicit 
verification in a certain sense yields the explicit one. For example, in traditional intuitionistic 
systems Vhür-^D^ implies V H ly}T->lf(y)}cp for some computable function / (cf. [16]). 
However, the proof of this fact itself cannot be formalized in V and its use in the rule insertion 
mode leads to some sort of a reflection tower. Therefore, ever for the constructive systems 
the practical suggestion is to use the explicit verification, i.e. to establish V h Ij/]r->-[/(y)]v? 
directly rather than to prove V h OT-+a<p and then to apply a general theorem of obtaining 
the explicit verification from the implicit one; this involves some hidden and potentially high 
metamathematical costs. 

2. Advanced systems with built-in reflection mechanisms. There is a number 
of systems which have or intend to have such mechanisms. The paper [11] mentions several 
of them: FOL, NQTHM, HOL and Nuprl. At least one more is coming: MetaPrl at 
Cornell University. Probably more systems will join this set since reflection arguments are 
surprisingly often used in mathematical and common reasoning. The existing implicit reflec- 
tion mechanisms in these systems lead to unnecessary metamathematical costs (cf. Section 
5). For such systems the idea of having explicit reflection (perhaps, along with the implicit 
one) might be seriously considered, because the explicit reflection can be added to a system 
without any extra metamathematical assumptions at all (Theorem 6.6). 

Right now within the Nuprl research group at Cornell University we are exploring the 
possibility to build explicit reflection mechanisms in the new generation of Nuprl systems. 
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